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The definition of edge stress is introduced in order to quantify the energy cost to deform a pre-existing edge
in a two-dimensional crystal. Using density-functional ab initio calculations, edge stresses, as well as edge
energies, are determined for the armchair and zigzag edges in graphene. It is found that both edges are under
compression along the edge and the magnitude of compressive edge stress of armchair edge is larger than that
of zigzag edge. In addition, hydrogen termination results in stress-free state for both edges. This excess edge
quantity is expected to contribute to understanding various edge-related phenomena in graphene such as edge
reconstructions and edge functionalizations.
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Graphene is a stable monolayer of hexagonal carbon lat-
tice that has been isolated from bulk graphite by microme-
chanical exfoliation.1 Intrigued by its unprecedented struc-
tural uniqueness as a strictly two-dimensional �2D� material,
a great deal of research efforts have been made to unravel
fundamental properties of graphene, such as chiral quantum
Hall effects and zero-field conductivity.2–6 In particular, more
recent focuses have been on finite-sized graphene specimens
in the form of ribbon or strip, in order to realize practical
applications toward graphene-based nanoelectronics. For ex-
ample, a field-effect transistor has successfully been demon-
strated with graphene ribbons of less than 10 nm width.7,8

Graphene nanoribbons reveal very unique properties such as
special edge states,9 half-metallicity,10 lateral confinement of
charge carriers, and band-gap opening.11 A variety of edge
functionalizations have also been explored to tailor their
electronic, magnetic, and chemical properties.12–16 These re-
markable features of graphene nanoribbons are attributed to
the existence of edge, the finite width, and the associated size
effects. Therefore the understanding of the structural and
electronic properties of graphene edge is of essential impor-
tance for the development of diverse nanoscale electronic,
spintronic, and sensing devices.

Edge can be viewed as a line defect of a 2D crystalline
monolayer. This notion reminds us of the importance of pla-
nar defects �e.g., surfaces and interfaces� in three-
dimensional �3D� crystals. It is thus natural to deduce an
analogy between edge and surface. As surface energy and
surface stress play a combined role in describing various
phenomena of surface-dominant 3D crystalline material
systems,17,18 edge-related unique properties of 2D crystals
can potentially be understood through edge energy and edge
stress. For example, a recent study has attempted to link edge
energy to planar edge reconstructions in graphene
nanoribbons.19 However, to the best of the author’s knowl-
edge, there has not been any report on edge stress of a 2D
crystal layer. In this work, we present the theoretical defini-
tion of edge stress, together with edge energy, by extending
the idea of surface excess variables to this reduced-
dimensional material system. Then, using density-functional
ab initio calculations,20,21 we determine the values of edge
stress and edge energy for zigzag and armchair edges in
graphene. In addition to free edges, hydrogen-terminated

graphene edges are also considered to examine the effects of
passivation on edge stress.

Let us recall surface energy and surface stress of a slab or
a film of crystalline material. While surface energy is defined
as the energy cost to create a surface, the energy cost to
deform a surface is referred to as surface stress.17,18,22–24

Analogy applies to a strictly 2D planar crystal layer having
edges such as graphene nanoribbons. Edge energy � is inter-
preted as the total excess energy possessed by all atoms close
to the edge, normalized by the edge length L. This quantity
defines the total work per unit length required to form a new
edge. Edge stress f is defined as the unit reversible work
involved in deforming a pre-existing edge. The relationship
between edge energy and edge stress is represented by the
Taylor expansion of edge energy under elastic strain limit
�i.e., ��1� as

���� = �0 + f� , �1�

where �0 is the edge energy when the edge is unstrained.
Following the Shuttleworth’s representation of two re-

versible processes in creating and straining surfaces,17,23,24

the edge stress can similarly be written in terms of the de-
rivative of edge energy with respect to strain as f =�
+d� /d�. Because we only consider deforming a 2D planar
crystalline sheet along a straight edge, the associated stress
and strain are both scalar �either positive or negative�. Sub-
jected to strain, the number of atoms per unit length and the
electronic density of a crystal edge do change, which is the
origin of the difference between edge energy and edge stress,
represented by the last term d� /d� in the above equation.

The edge energy is calculated from the total-energy dif-
ference between model systems with and without edge, and
the edge stress is basically obtained by fitting the calculated
edge-energy values upon different amounts of strain. There-
fore, the total-energy calculation is the key ingredient in nu-
merically determining edge energy and edge stress alike. In
what follows, the computational procedure employed in this
work is described.

Ab initio total-energy calculations were performed using
the program SIESTA �Ref. 25� that implements the pseudopo-
tential approximation and the basis set of numerical atomic
orbitals26–29 into the framework of density-functional
theory.20,21 The norm-conserving nonlocal Troullier-Martins
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pseudopotential,30 factorized in the Kleinman-Bylander sepa-
rable form,31 was employed with the core radius of 1.25 bohr
for carbon atom. We employed local-density approximation
�LDA� by using the Ceperley-Alder exchange-correlation
functional32 as parameterized by Perdew and Zunger.33 A
basis set of double-� plus polarization functions was used for
the valence electrons of carbon atom with the energy shift
parameter of 0.02 Ry.25,34 An energy cutoff of 100 Ry was
set for the real-space integrations. The relaxed atomic posi-
tions were obtained by the conjugate gradient optimization
until the forces on each atom were smaller than 0.04 eV /Å.
After relaxation with fully periodic boundary conditions, we
obtained a graphene lattice constant 2.46 Å. It has been
reported that the calculations of binding energy and elastic
constants of graphene, with the above options, agree well
with plane-wave calculations and experiment.35 The method
has also resulted in the band structure of graphite that is
in good agreement with plane-wave pseudopotential
calculations.36

Flat nanoribbon models were generated for the computa-
tion of edge energy and edge stress in graphene. We placed a
graphene layer in a periodic 3D slablike supercell. The out-
of-plane thickness of the supercell �i.e., the direction perpen-
dicular to a flat graphene� was always set to be 10 Å which
is sufficient to avoid the interaction between graphene layers
caused by the periodicity. Edge energy is uniquely deter-
mined once an edge is identified. So is edge stress within the
elastic range of strain. It implies that both excess variables
are independent of the width of nanoribbon. To verify this,
we considered several in-plane sizes with different ribbon
widths, based upon the 8-atom unit model �Lx0�Ly0�, as
depicted in Fig. 1. For example, the supercell of Z4�1 zig-
zag edge model has a side length of 4Lx0+Lvac, four times
greater than the unit length plus in-plane vacuum zone, in the
direction perpendicular to the zigzag edge, while the other
side has the same length Ly0 as the unit model. The vacuum

zone �Lvac�Ly0�, with Lvac=10 Å, was introduced in order
to create two free edges and avoid the interaction between
them. This modeling allows fully periodic boundary condi-
tions on all six faces of the simulation box. Similar proce-
dure was performed to build armchair edge models �e.g.,
A1�3 as illustrated in Fig. 1�. In this study, total 10 models
of Z2�1 up to Z6�1 and A1�2 up to A1�6 were consid-
ered.

As mentioned above, edge energy is calculated from the
total-energy difference between a graphene nanoribbon mod-
eled as above �with the in-plane vacuum area� and a perfect
graphene without edge �i.e., no vacuum area�. However, spe-
cial attention has to be paid because it has been reported that
ab initio total-energy calculations of surface energy diverge
with increasing slab thickness if there are numerical differ-
ences �e.g., k-point sampling� between the calculations for
bulk and slab.37 A recent study38 has shown that the approach
by Fiorentini and Methfessel39 can effectively avoid such
divergent behaviors of surface energy. For the calculation of
edge energy, a similar equation is here introduced as

� =
1

2L
�Eribbon

N − Negraphene� , �2�

where Eribbon
N denotes the total energy of the graphene nano-

ribbon having N carbon atoms in the supercell. L is the side
length of the supercell along the edge, and egraphene is the
energy per atom in a perfect graphene without an edge. To
determine egraphene, we used the unit supercell model of eight
carbon atoms �Fig. 1�, and chose 10�10�1 k-point mesh
according to the Monkhorst-Pack scheme.40 Total five Eribbon

N

values were calculated for zigzag edge, by employing 10
�10�1 k-point mesh for Z2�1 �N=16�, 4�10�1 for
Z3�1 �N=24�, Z4�1 �N=32�, and Z5�1 �N=40�, and 2
�10�1 for Z6�1 �N=48�. Similar k-point meshes were
selected for the armchair edge models such as 10�10�1
for A1�2, 10�4�1 for A1�3, and so on.

Results of edge energy with respect to the width of nano-
ribbon are shown in Fig. 2 that demonstrates nondivergent
behaviors of edge energy. The average values are
1.533 eV /Å for zigzag edge and 1.243 eV /Å for armchair
edge. All five ribbon widths agree within 0.2% for zigzag
edge and within 0.3% for armchair edge, respectively. Arm-
chair edge energy is therefore lower than zigzag edge energy
by 0.290 eV /Å. This energetically favored armchair edge is

Unit (1x1) Model

Zigzag (4x1) Model

Armchair
(1x3) Model

FIG. 1. Periodic supercells for graphene nanoribbons, such as
zigzag �4�1� and armchair �1�3� models, are generated based on
the unit �1�1� model. The longer sides of the vacuum area are kept
10 Å or larger. Shaded areas are shown for illustration only.

Ribbon Width (A)

E
dg

e
E

ne
rg

y
(e

V
/A

)

5 10 15 20 25 30 35
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Zigzag Edge

Armchair Edge

o

o

FIG. 2. �Color online� Calculated edge energies with respect to
the width of graphene nanoribbon.
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consistent with recent density-functional calculations,19,41

and experiments by scanning tunneling microscopy.42 Koski-
nen et al.19 have calculated edge energies from the binding
energy of graphene nanoribbons, which is equivalent to the
above definition, Eq. �2�. Using generalized-gradient ap-
proximation �GGA� �Ref. 43� and projector-augmented wave
method,44 they obtained 1.31 eV /Å for zigzag edge and
0.98 eV /Å for armchair edge. Both are commonly lower
than the current LDA results. It is noted that similar trend has
been found in the surface energy calculations for low Miller-
index surfaces in 3D metallic slab where LDA resulted in
larger surface energy than GGA.38

Armchair edge has C–C bonds that are parallel with the
edge direction. After relaxation, the length of the armchair
edge C–C bond was 1.24 Å which is shorter than the other
parallel C–C bonds ��1.42 Å� away from the edge. It thus
exhibits the strong pair of the sp hybridization and the higher
charge density in the edge C–C bond than the interior bonds.
This strong pairing heals the dangling-bond nature of the
armchair edge C–C bond, resulting in lower edge energy
than zigzag edge as discussed by Okada.41 In contrast, no
significant difference of C–C bond lengths between edge and
interior was found in zigzag edge relaxation. This study by
Okada41 also implies that density-functional total-energy cal-
culation can still be useful for reactive edges even though
they involve multiple unpaired electrons.

Next, for the calculation of edge stress, a series of strains,
from −0.6% up to +1.4% with the increment of 0.2%, were
applied to three zigzag edge models �Z2�1, Z3�1, and
Z4�1� and three armchair edge models �A1�2, A1�3, and
A1�4�. The same strains were also applied to the unit model
given in Fig. 1. Then, using Eq. �2�, we computed the edge
energy for each strain state and each ribbon model. There-
fore, 33 values of edge energy were collected, respectively,
for zigzag and armchair edges �i.e., 11 strain states including
zero strain, for 3 graphene models�. Finally, these data were
fitted to find the slope that is the edge stress itself, f = ��
−�0� /�, according to Eq. �1�.

Results are shown in Fig. 3 where linear behaviors are
well captured in the vicinity of �=0 �i.e., elastic limit�. The
values of edge stress are −2.248 eV /Å for zigzag edge and
−2.640 eV /Å for armchair edge. Both are negative, which
implies that both edges are under compression along the
edge direction. In terms of magnitude, armchair edge stress
is larger �i.e., under more compressive state� than zigzag
edge stress by 0.392 eV /Å, which is in contrast to edge
energies for which armchair edge has revealed a lower edge
energy than zigzag edge by 0.290 eV /Å.

The negative edge stress means that an edge atom tends to
push its neighboring edge atoms �i.e., increase the edge
length� in order to lower its energy. This can be understood
from the curve of total energy with respect to applied strain
as shown in the inset of Fig. 3 where the total-energy values
are in reference to that of unstrained edge. At zero strain, the
curve has negative slope. The lowest total energy thus corre-
sponds to a certain positive strain, that is, tension along the
edge. An edge atom tries to push its neighboring edge atoms
away in order to increase the edge length, reduce its energy,
and reach a lower-energy state. In other words, at the zero
strain, an edge atom is experiencing compressive edge stress.

Finally, we considered hydrogen-terminated edges in or-
der to investigate the effect of hydrogen passivation on the
reduction of edge stresses. In the above, edge stress were
determined from the difference of edge energies between
strained and unstrained systems. For the unstrained system,
we used the unit model of perfect graphene without edge
�Fig. 1�. However, for hydrogen-terminated edges, we have
to use another approach since we cannot directly compare
the perfect graphene model with edged graphenes, due to the
existence of hydrogen atoms. Therefore, for such edges, we
employed a method based on the additive property of elastic
strain energy that has successfully been used to investigate
the adatom effects on surface stress of Cu surfaces �see Pao
et al.45 for details�. Revising their method to suit the two-
dimensional graphene layer, we obtained the edge stresses of
0.006 eV /Å for zigzag edge and −0.017 eV /Å for armchair
edge. Both are negligible amounts of stress compared with
the corresponding free edges. This indicates that hydrogen
termination turns the compressive states of edge stress into
almost stress-free ones.

In summary, we have defined edge stress as the energy
cost to deform a pre-existing edge in an isolated two-
dimensional crystalline monolayer. Using density-functional
ab initio calculations, edge energy and edge stress have been
determined for the armchair and zigzag edges in graphene.
Both edges are under compression along the edge. While
armchair edge energy is lower than zigzag edge energy, the
magnitude of compressive edge stress of armchair edge is
larger than that of zigzag edge. Furthermore, hydrogen ter-
minations result in stress-free edges. These excess edge vari-
ables are expected to play a key role in examining various
edge-related phenomena in graphene such as edge recon-
structions and edge functionalizations.

This work was supported in part by a Faculty Grant-in-
Aid program from the University of Wyoming. The author
appreciates helpful discussion with Changwen Mi.
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FIG. 3. �Color online� Excess edge energies �eV /Å� with re-
spect to applied strains. The slope is edge stress �eV /Å�. �Inset�
Total energies of zigzag �4�1� and armchair �1�4� nanoribbon
models with respect to applied strains.
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